Title Haplotype Data Simulation

Version 0.2

Date 2005-09-22

Author Giovanni Montana

Maintainer Giovanni Montana <g.montana@imperial.ac.uk>

Description Package for haplotype data simulation. Haplotypes are generated such that their allele frequencies and linkage disequilibrium coefficients match those estimated from an input data set.

Depends MASS

License GPL version 2 or later

R topics documented:

ACEdata .. 2
allelefreqs .. 2
checkpd .. 3
cor2dprime .. 3
cortocov .. 4
covtocov .. 4
divlocus .. 5
haplodata .. 6
haplofreqs .. 7
haplosim .. 7
ldplot .. 9
makepd .. 10
mergemats .. 10
mse .. 11
sumsqscale .. 12

Index 13
ACEdata

Description

ACE (angiotensin I converting enzyme) data set

Usage

data(ACEdata)

Format

A data set with 22 haplotypes and 52 SNPs.

Source

References

allelefreqs

Description

Estimates allele frequencies from a binary matrix

Usage

allelefreqs(dat)

Arguments

- **dat**
 A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

- **freqs**
 Vector of allele "0" frequencies

- **all.polym**
 If TRUE, all loci are polymorphic

- **non.polym**
 Vector of non-polymorphic loci, if any

Author(s)

Giovanni Montana
checkpd

Checks that a covariance matrix is positive definite

Description

Checks that a matrix is positive definite

Usage

```r
ccheckpd(sigma, tol = 1e-06)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigma</td>
<td>Covariance matrix</td>
</tr>
<tr>
<td>tol</td>
<td>Tolerance value</td>
</tr>
</tbody>
</table>

Value

If TRUE, the input matrix is positive definite.

cor2dprime

Correlations to D’ coefficients conversion

Description

Converts a matrix of correlation coefficients into a D’ matrix

Usage

```r
cor2dprime(mat, probs)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mat</td>
<td>A correlation matrix</td>
</tr>
<tr>
<td>probs</td>
<td>A vector of allele frequencies</td>
</tr>
</tbody>
</table>
The resulting matrix of D' coefficients

Giovanni Montana

cortocov

Correlation to covariance conversion

Converts a correlation matrix into a covariance matrix

cortocov(cor.mat, sd)

Correlation matrix

Vector of standard deviations

The covariance matrix

covtocor

Covariance to correlation conversion

Converts a covariance matrix into a correlation matrix

covtocor(cov.mat)

Covariance matrix
divlocus

Value

The correlation matrix

Examples

divlocus

Description

Compute a measure of genetic diversity at each locus

Usage

divlocus(dat)

Arguments

dat A binary matrix, rows are haplotypes and columns are binary markers

Details

This function implements a measure of diversity for a locus \(j \) as in Clayton (2002). If \(z_{ij} \) represents the allele \(j \) of haplotype \(i \), for \(i = 1, \ldots, N \) and assuming that alleles are coded as 0 and 1, the diversity measure can be written as

\[
D_j = 2 * N \left(\sum_{i=1}^{N} z_{ij}^2 - \left(\sum_{i=1}^{N} z_{ij} \right)^2 \right)
\]

Value

A vector containing the diversity measure for all markers

Author(s)

Giovanni Montana

References

Examples

data(ACEdata)
divlocus(ACEdata)
haplodata

Haplotype object creator

Description

Creates an haplotype data object needed for simulating haplotypes with haplosim. This object also contains some summary statistics about the real data.

Usage

haplodata(dat)

Arguments

dat A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

freqs Allele frequencies
cor Correlation matrix (LD coefficients)
div Locus-specific diversity measure
cov Covariance matrix for the normal distribution

Author(s)

Giovanni Montana

References

See Also

See also haplosim

Examples

data(ACEdata)

creates the haplotype object
x <- haplodata(ACEdata)

simulates 100 random haplotypes
y <- haplosim(100, x)
haplofreqs

Haplotype frequencies

Description

Compute haplotype frequencies

Usage

haplofreqs(dat, firstl, lastl)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>A binary matrix, rows are haplotypes and columns are binary markers</td>
</tr>
<tr>
<td>firstl</td>
<td>Position of the first locus</td>
</tr>
<tr>
<td>lastl</td>
<td>Position of the last locus</td>
</tr>
</tbody>
</table>

Value

A vector of haplotype frequencies

Author(s)

Giovanni Montana

References

Examples

```r
data(ACEdata)
freqs <- haplofreqs(ACEdata, 17, 22)
```

haplosim

Haplotype data simulator

Description

Generates a random sample of haplotypes, given an haplotype object created from a data set

Usage

haplosim(n, hap, which.snp = NULL, seed = NULL, force.polym = TRUE, summary = TRUE)
Arguments

n Number of haplotypes to generate
hap Haplotype object created with haplodata
which.snp A vector specifying which SNPs to include
seed Seed for the random number generator
force.polym if TRUE, all loci are polymorphic
summary if TRUE, additional summary statistics are returned

Value

A list containing:

data Simulated sample
freqs Allele frequency vector
cor Correlation matrix
div Locus-specific diversity scores
mse.freqs MSE of allele frequencies
mse.cor MSE of correlations

Author(s)

Giovanni Montana

References

See Also

See also haplodata

Examples

Example 1
#
data(ACEdata)

create the haplotype object
x <- haplodata(ACEdata)

simulates a first sample of 100 haplotypes using all markers
y1 <- haplosim(100, x)

compares allele frequencies in real and simulated samples
plot(x$freqs, y1$freqs, title=paste("MSE:",y1$mse.freqs)); abline(a=0, b=1)

compares LD coefficients in real and simulated samples
ldplot(mergemats(x$cor, y1$cor), id.type='r')
```r
# simulates a second sample of 1000 haplotypes using the first 20 markers only
y2 <- haplosim(1000, which.snp=seq(20), x)
#
# Example 2
#
# simulate a sample of 500 haplotypes based on the ACE data set
set.seed(100)
data(ACEdata)
n <- 500
x <- haplodata(ACEdata)
y <- haplosim(n, x)

# compute the haplotype frequencies
# an haplotype starts at markers 17 and ends at marker 22
freq1 <- haplofreqs(ACEdata, 17, 22)
freq2 <- haplofreqs(y$data, 17, 22)

# extract the set of haplotypic configurations that are shared
# by real and simulated data and their frequencies
commonhapls <- intersect(names(freq1), names(freq2))
cfreq1 <- freq1[commonhapls]
cfreq2 <- freq2[commonhapls]

# compare real vs simulated haplotype frequencies
par(mar=c(10.1, 4.1, 4.1, 2.1), xpd=TRUE)
legend.text <- names(cfreq1)
bp <- barplot(cbind(cfreq1, cfreq2), main="Haplotype Frequencies",
             names.arg=c("Real","Simulated"), col=heat.colors(length(legend.text)))
legend(mean(range(bp)), -0.3, legend.text, xjust = 0.5,
       fill=heat.colors(length(legend.text)), horiz = TRUE)
chisq.test(x=n*cfreq2, p=cfreq1, simulate.p.value = TRUE, rescale.p = TRUE)
```

ldplot

LD plot

Description

Creates a linkage disequilibrium plot from a matrix of pair-wise LD coefficients

Usage

```r
ldplot(ld.mat, ld.type, color = heat.colors(50), title = NULL)
```

Arguments

- `ld.mat`: A square matrix of LD coefficients
- `ld.type`: A character value specifying what coefficients are used as input: either 'r' for correlation coefficients or 'd' for D/Dprime scores
- `color`: A range of colors to be used for drawing. Default is `heat.colors`
- `title`: Character string for the title of the plot
Author(s)

Giovanni Montana

References

Examples

data(ACEdata)

LD plot of ACEdata using r^2 coefficients
ldplot(cor(ACEdata), ld.type='r')

makepd

Makes a matrix positive definite

Description

Modifies a matrix so that it is positive definite

Usage

makepd(mat, eig.tol = 1e-06)

Arguments

mat Matrix
eig.tol Tolerance value

Value

A positive-definite matrix

mergemats

Merges two LD matrices

Description

Merges two LD matrices. It can be used to compare the LD coefficients estimated in the real and simulated data sets

Usage

mergemats(mat1, mat2)
mse

Arguments
mat.1 First square matrix
mat.2 Second square matrix of same dimensions

Details

Value
The resulting matrix has upper triangular matrix from mat.1 and lower triangular matrix from mat.2

Author(s)
Giovanni Montana

References

Description
Computes the Mean Square Error between two vectors

Usage
mse(x, y)

Arguments
x First vector
y Second vector, must have same length

Value
The MSE score
sumsqscale Scales a matrix

Description
Scales the columns of a matrix so that the squared elements sum to unity

Usage

sumsqscale(mat)

Arguments

mat A matrix

Value
The scaled matrix.

Examples
Index

*Topic** datasets
 ACEdata, 1
*Topic** internal
 checkpd, 3
 cor2dprime, 3
 cortocov, 4
 covtocor, 4
 makepd, 10
 mse, 11
 sumsqscale, 12
*Topic** utilities
 allelefreqs, 2
 divlocus, 5
 haplodata, 6
 haplofreqs, 7
 haplosim, 7
 ldplot, 9
 mergemats, 10

ACEdata, 1
allelefreqs, 2
checkpd, 3
cor2dprime, 3
cortocov, 4
covtocor, 4
divlocus, 5
haplodata, 6, 8
haplofreqs, 7
haplosim, 6, 7
ldplot, 9
makepd, 10
mergemats, 10
mse, 11
sumsqscale, 12